3D Face Project

Paul Welti
Sagem Défense Sécurité
Technical coordinator

Overview

- Background
- Objectives
- Workpackages
Biometrics and Border Control

Biometric ePassport
- EU-Council Regulation No 2252/2004 - of 13 December 2004 on standards for security features and biometrics in passports and travel documents

- Biometrics well accepted by operator and citizens if it provides:
 - Security and trust
 - Efficient
 - Comfort

- ISO 19794-4
- ICAO
- NDB
- EAC
- Ageing
- ISO 19794-5
- BAC
- Country S CA
- RFID
- ISO 14443
- Chip ID
- MRZ

Border control

- UNITED KINGDOM: BORDER CONTROL - IRIS
- AUSTRALIA: BORDER CONTROL - SMARTGATE
- FRANCE: BORDER CONTROL - PEGASE
- FRANCE / BELGIUM: VISA PILOT - BioDev

- Security and trust
- Efficient
- Comfort
In practical
Existing application with 2D facial

- SmartGate - Kiosk
 - Verification against template on Passport
State of the Art

• Performance depends on many factors
 • Quality of the capture device
 • Quality of the algorithms
 • Cooperation of the user
 • Environment factors

• Typical ranges of performances for the three main biometric technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Fingerprint</th>
<th>Iris</th>
<th>Face</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTE</td>
<td>0.1%</td>
<td>1-2%</td>
<td>0%</td>
</tr>
<tr>
<td>FA</td>
<td>0.01%</td>
<td>0.0001%</td>
<td>1.00%</td>
</tr>
<tr>
<td>FR</td>
<td>0.5%</td>
<td>2%</td>
<td>2-10%</td>
</tr>
</tbody>
</table>

Authentication (1:1)

3D Face
Biometric Research

- Authentication with ePassport and
 - 2D Face-Recognition
 - Fingerpint-Recognition
- 2D face recognition does not provide any robust mechanisms, to allow liveness detection
- ICAO - RFI 10'2004:
 - “… new technologies is now sought … Technologies and processes that are suitable for automated self-identification at international borders that will enable unattended border crossing”

Unattended border crossing can only be achieved, if additional (biometric) characteristics are observed

Need for robustness
3D Face Recognition approach

- 3D face scanning
 - Observation of the texture (Image information)
 - and the shape (Geometry)
- Multimodal Analysis
 - Link different information channels

The 3D Face Project

- Integrated Project (026845)
 - 36 month project started April 2006
 - Research on 3D facial recognition to address needs of airports for processing biometric passports
- Consortium of 12 partners
 - Industry (Bundesdruckerei, Philips, Sagem, L1-Viisage)
 - SMEs (Cognitec, Polygon)
 - Research Centres (Fraunhofer-IGD, CGC)
 - Universities (Kent, Napoli, Twente,)
 - Berlin Airport
 - 3 additional end-users to join the project soon: BKA, JRC and Salzburg Airport

Berlin Airport
3 additional end-users to join the project soon: BKA, JRC and Salzburg Airport
Project Objectives

- Explore multimodal facial data
 - 3D, 3D+2D
 - Face texture
 - Multiple algorithms

- Improve biometric performance
 - FAR < 0.25%, FRR < 2.5%
 - Internal competition of labs
 - Selection of best results by independent evaluation

Project Objectives (cont.)

- Template Protection
 - Highest degree of privacy protection

- Validation at airports
 - Operational performance
 - Social and operational issues

- Standardization
 - Direct influence on international standards
Technical goals 3D Face Project

- Develop existing approaches to full operational 3D face recognition technology with higher biometric performance (3D vs. 2D).
- Realize multimodal feature analysis (surface metrics combined with texture metrics).
- Prove performance improvements with technology testing and scenario testing programs.
- Research towards fake resistance to allow technology for use at critical infrastructure installation.
- Develop compact coding format for 3D face template and submit format to the standardization body (ISO/IEC JTC1 SC37 WG3).
- Be backwards compliant to existing installations (older Passports with 2D template).
- Explore an innovative approach for the protection of privacy, through the design of biometric template protection.
- Bring technology to a level where it can be used operationally at airports.

Organisation of the project
Status / progress of the project

- Original schedule is met
- A 3D sensor mock-up is available
- Some issue solved for data collection (regulation)
- Some first lab results
 - 3D sensors overview
 - Faking scenarios
 - 3D face recognition
 - Face texture
 - Fusion
 - Template protection
- Challenge is now to reach the target results and demonstrate the efficiency on the field with end-users

More Information on the project is available at:
http://www.3dface.org